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Networks these days need to handle a lot more 
connections, with a growing demand for 
low latency without sacrificing security and 

reliability. However, applications are often limited 
by the use of TCP as the underlying transport. TCP, 
without the TCP Fast Open extension, introduces 
one round-trip time (RTT) of latency due to its 
handshake. It might slow down performance when 
packet loss occurs and when packets are retrans-
mitted with long delays leading to head-of-line 
blocking. Moreover, TCP is built in the system 
kernel, which brings difficulties to the protocol 
update.

To tackle these issues, a new transport protocol 
called Quick UDP Internet Connections (QUIC) has 
been proposed. QUIC is defined on top of UDP, 
and its design is inspired by the best practices of 
multiple existing protocols, including TCP, Trans-
port Layer Security (TLS), and HTTP/2. QUIC aims 
to reduce connection latency by sending data 
directly when establishing a connection in the 
best case (the so-called “0-RTT” approach). Fur-
thermore, it provides multiplexing features opti-
mized for HTTP/2 and richer feedback information 
that might allow for new congestion control 
approaches. Moreover, as encapsulated in UDP, 
QUIC can be easily implemented in user space 

instead of the system kernel, which enables faster 
deployment as part of application update cycles.

The QUIC protocol is currently being stan-
dardized by the IETF QUIC working group. The 
IETF community showed strong interest in stan-
dardization of QUIC. A previous version has been 
deployed in most Google services as well as the 
Chrome browser, and is being implemented by a 
few third-party developers. It should be noted that 
the standardization process of QUIC is fully open 
to community input that might lead to significant 
differences in the protocol design, as compared to 
the version currently deployed by Google.

Design Overview
Figure 1 shows the layering approach of QUIC. 
QUIC incorporates congestion control and loss 
recovery features similar to TCP, while providing 
richer signaling capabilities. Additionally, QUIC 
decreases network latency by offering fewer RTTs 
for connection setup. QUIC incorporates the key 
negotiation features of TLS 1.3, requiring all con-
nections to be encrypted. The motivation behind 
mandatory encryption isn’t just to ensure security 
and privacy of user data, but also to prevent mid-
dle boxes from tampering with the packet infor-
mation, which can hinder the future evolution of 
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the QUIC protocol. Further, QUIC also 
subsumes features of HTTP/2 such 
as multi-streaming, while avoiding 
problems such as head-of-line block-
ing that occur when TCP is used, 
because all packets (of potentially dif-
ferent HTTP/2 streams) must be deliv-
ered in order.

Connection Establishment
A majority of services these days 
require a secure and reliable network 
connection, and TCP+TLS are widely 
used for fitting this purpose. One issue 
with TCP+TLS (1.2) is that it takes at 
least two RTTs to set up a secure con-
nection, which brings a significant 
latency overhead. QUIC improves on 
this by tightly integrating with TLS1.3, 
leading to a minimum of zero RTTs  
to establish an encrypted connection —  
meaning that payload data can be sent  
on the first packet if a previous encryp- 
tion session is resumed.

First-Time Connection 
Establishment
With successful version negotiation, 
QUIC uses one RTT for the first-time 
connection establishment by combining  
the transport and crypto handshake, 
which is two RTTs less than the widely 
used TCP+TLS 1.2 and one RTT less 
than TCP+TLS 1.3 (see Figure 2a). QUIC 
combines the transport and crypto 
handshake to minimize connection 
latency, carrying both the TLS hand-
shake and the relevant QUIC transport 
setup parameters in the first packet of 
the connection.

When the QUIC client is connect-
ing to a server for the first time, it 
sends the Client Hello message to the 
server for key negotiation, along with 
some basic QUIC options and param-
eters such as the connection identi-
fier as well as the preferred version 
number. The client encodes the hand-
shake according to the version num-
ber it proposed. If the server doesn’t 
support the version, it would trigger 
the client to go through an additional 
version negotiation process. Other-

wise, the server replies with the Server 
Hello message, certificate, and session 
information that the client can use the 
next time it connects to the server. 
The client can then send its encrypted 
requests to the server, taking a total of 
one RTT for connection setup.

The parameters negotiated during 
the first connection are contained in a 
cryptographic cookie stored on the cli-
ent. It’s used to authenticate the client 
when the client connects to the same 
server again. The cookie also contains 
the server’s Diffie-Hellman value, which 

is used to calculate the encryption key. 
This information is the basis for the 
0-RTT connection establishment.

0-RTT Connection Establishment
Many connections are established 
between clients and servers that had 
communicated before, making it pos-
sible to reduce negotiation latency 
if the server could recognize the cli-
ent during subsequent connections. 
Not requiring one RTT for the trans-
port handshake and utilizing session 
resumption for encryption allows a 

Figure 1. Quick UDP Internet Connections (QUIC) architecture. TLS = 
Transport Layer Security.
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Figure 2. Handshake round-trip time (RTT) of different protocols. (a) First-time 
connection establishment. (b) Subsequent connections.
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QUIC client to immediately send data 
to the server it had connected to before 
(see Figure 2b).

To resume a cryptographic ses-
sion, the client sends its cached cryp-
tographic cookie and Diffie-Hellman 
value to the server along with the 
encrypted payload. The server authen-
ticates the client through information 
contained in the cookie. After success-
ful authentication, it can calculate the 
encryption key using the Diffie-Hell-
man value stored in the cookie and 
the value sent by the client. The server 
can then decrypt the payload data — 
such as a HTTP/2 request — and send 
its encrypted response immediately 
back to the client.

Stream Multiplexing
Stream multiplexing is a method for 
sending multiple streams of data over 
a single transport connection. Brows-
ers usually open multiple concurrent 
TCP connections when accessing a 
website because HTTP1.1 could only 
request one resource at a time (see 
Figure 3a), which consisted of short 
data transfers over independent con-
nections. This introduced additional 
latencies and the complexity of man-
aging multiple connections.

HTTP/2 addresses this problem by 
multiplexing streams over one TCP con-
nection if multiple requests are sent to  
the same server. However, even if the 
payload data of the different streams 
are independent, all data transmitted 
over the same TCP connection will be 
delivered in order to the application, 
leading to head-of-line blocking of 
missing data on one stream for data 
successfully transmitted and received 
on other streams, as Figure 3b shows.

QUIC supports multiplexing of 
concurrent HTTP streams on a single 
connection without requiring ordered 
delivery of all packets of the transport 
connection, as Figure 3c shows. In 
QUIC, all data are still transmitted fully 
reliably. One QUIC packet can carry 
multiple frames of the same or differ-
ent streams. All the frames belonging 
to the same stream are delivered in 
order, but the missing frames of one 
stream don’t block the delivery of 
other streams’ payload data.

QUIC also adapts two levels of flow 
control similar to HTTP/2 over TCP. 
Connection-level flow control allows 
adjustment of the aggregate buffer 
for the entire connection. Stream-
level flow control allows the receiver 
to adjust how much data it’s willing 

to allocate for each stream, avoiding 
that a single stream consumes all the 
buffer resources and thus could block 
other stream transmissions.

Congestion Control and Loss 
Recovery
The QUIC working group in the IETF is 
currently chartered to only use stan-
dardized congestion control as the 
default congestion control algorithm, 
which at the moment is just NewReno1 
and Cubic.2 Cubic is a widely used 
congestion control mechanism and is 
undergoing activity in the IETF TCPM 
working group. Similar to most TCP 
implementations today, QUIC aims 
for a pluggable congestion control 
interface that allows experimenta-
tion with different congestion control 
algorithms.

However, QUIC provides a slightly 
different environment for congestion 
control than TCP does. First, it inher-
ently adopts modern loss-recovery 
mechanisms such as F-RTO3 and Early 
Retransmit.4 Further, it offers more 
detailed feedback information for loss 
detection. For example, it uses a mono-
tonically increasing packet number 
but doesn’t retransmit on the packet-
level (only on a per-frame base). This 
allows QUIC to distinguish retransmis-
sions from the originally sent packets, 
avoiding retransmission ambiguities, 
similar to the idea of the TCP Recent 
ACKnowledgment (RACK) algorithm.5 
Additionally, QUIC carries informa-
tion about the delay between when 
a packet was received and when the 
ACK was sent. This information allows 
the original sender to achieve a better 
estimation of the path RTT. QUIC also 
adopts the TCP’s selective acknowl-
edgment mechanism,6 and supports 
up to 255 ACK ranges, making it more 
resilient to reordering and loss.

Challenges and Future 
Directions
The first QUIC working group meet-
ing was held at IETF-97 and the ini-
tial working group documents have 

Figure 3. Multiplexing comparison. This involved sending multiple streams of data 
over a single transport connection using (a) HTTP1.1, (b) HTTP/2, and (c) QUIC.
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been adopted shortly after, focusing 
on the design of the core transport 
protocol;7 the congestion control and 
loss recovery mechanism;8 using TLS 
1.3 for key negotiation;9 and a map-
ping for HTTP/2.10 The QUIC work-
ing group charter foresees multipath 
support and optional forward-error 
correction (FEC) as the next step, 
but are currently out of scope until 
all action items on the current mile-
stone list are completed. Further, the 
working group also focuses on net-
work management issues that QUIC 
may introduce, aiming to produce an 
applicability and manageability state-
ment in parallel to the actual protocol 
work. Aside from this work, QUIC also 
provides the potential for research in 
other areas.

Congestion Control in Special 
Network Scenarios
Congestion control mechanisms in 
transport protocols need to adapt to 
many different scenarios with distinct, 
varying network characteristics. Here, 
wireless networks are a key challenge 
for congestion-control research. Tra-
ditionally, TCP congestion control 
regards packet loss as congestion 
occurrence. For wireless networks, 
however, loss often indicates trans-
mission errors, especially in the case 
of mobility of the connecting client. 
The more fine-grained information 
provided by QUIC can help to dis-
tinguish other loss events from con-
gestion events and therefore a large 
performance improvement could be 
achieved in situations with high non-
congestion related loss rates.

Other specific network scenarios, 
such as data centers that require low 
latency for short flows11 and virtual 
reality (VR) that has high demand for 
user-perceived latency, might also 
benefit from the more accurate tim-
ing information provided by QUIC’s 
feedback scheme. Furthermore, cus-
tomizing QUIC to specific network 
scenarios could be achieved more 
easily in user space implementations 

of QUIC, which provides a platform 
for easier experimentation and faster 
deployment.

Forward-Error Correction
Packet loss leads to congestion win-
dow reduction and thereby decreases 
the throughput, regardless of whether 
the loss is congestion-related. How-
ever, even if congestion occurred and 
the sending rate is correctly reduced, 
packet loss still causes additional 
delays due to potentially slow recovery 
mechanisms, based on either duplicate 
acknowledgments or even retransmis-
sion timeouts (for example, if tail loss 
occurs). Coding is a method of using 
redundant information sent with pack-
ets for FEC, providing better loss toler-
ance and proactive, faster recovery.

One of the issues of coding is the 
additional time introduced for encod-
ing and decoding, which is against 
QUIC’s low-latency design principle. 
Further, as the amount of redundant 
information affects the performance 
of coding-based loss recovery, it’s a 
tradeoff with bandwidth consump-
tion. Coding could be used to improve 
performance for scenarios with high 
packet loss such as wireless networks, 
but it would also introduce more 
energy consumption, causing issues 
for power-constrained mobile ter-
minals. While coding has been well-
deployed in the link layer, it’s still a 
point of research for transport layer 
protocols such as QUIC and TCP.12

Application-Based Optimization
Currently, the working group will focus 
on providing a mapping of HTTP/2 
to QUIC as the initial use case. How-
ever, QUIC can also be used for other 
applications. Especially as future ver-
sions of QUIC might incorporate FEC, 
it could be applied to applications such 
as real-time communication and video 
streaming, which are tolerant to loss 
but latency-sensitive. The performance 
of QUIC could thus be optimized based 
on application requirements, which 
requires an interface for the application 

to configure — for example, the con-
tent type and tolerance of packet loss.

Prioritization
Web content usually has dependen-
cies between the Web objects, which 
might limit performance.13 For exam-
ple, a JavaScript file should be loaded 
prior to a file triggered by the script. 
Given that QUIC provides multiple, 
independent streams to transmit these 
Web objects, it’s possible for QUIC to 
prioritize between streams based on 
these dependencies. However, setting 
the priority levels correctly, consid-
ering dynamic object load time and 
current network status, is an open 
field for additional research.

Security and Privacy
QUIC provides secure transport by 
integrating the security functionality 
of TLS and enforcing the encryption 
of all connection data. However, sim-
ilar to TLS1.3, 0-RTT resumption in 
QUIC might also introduce new secu-
rity threats. A typical kind of issue is  
the replay or manipulation of packets  
from a previous connection hand-
shake. Furthermore, if such an attack 
causes the client and server to perform 
a full handshake, consuming compu-
tational resources and memory space, 
it could be used as an additional DoS 
attack vector.14 Further analysis and 
research is valuable in this space.

Unencrypted information such as 
a connection identifier is susceptible 
to the threat of pervasive monitor-
ing attacks. However, some informa-
tion is needed for economically viable 
network management supporting the 
current common practice of firewalls, 
load balancers, and network address 
translation (NAT) traversal. To con-
serve privacy while allowing for 
functions such as IP address mobil-
ity, it’s suggested that QUIC use new 
identifiers for each encrypted com-
munication session to avoid link-
ability.15 This tussle is the subject of 
an ongoing discussion in the QUIC 
working group and will be even more 
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relevant when work is extended to 
include multipath support for QUIC.

Q UIC is a new transport proto-
col currently under standardiza-

tion in the IETF, introducing features 
such as 0-RTT connection establish-
ment, stream multiplexing avoiding 
(packet-based) head-of-line block-
ing, and improved signaling for loss 
recovery and congestion control. 
Given these changed characteris-
tics compared to TCP, QUIC provides 
new challenges and opportunities for 
research. Moreover, as QUIC is based 
on top of UDP, it provides a platform 
for easy experimentation, and poten-
tially fast adoption and deployment 
of research results. 
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