
72 Published by the IEEE Computer Society 1089-7801/17/$33.00 © 2017 IEEE IEEE INTERNET COMPUTING

Standards
Editor: Yong Cui • cuiyong@tsinghua.edu.cn

Networks these days need to handle a lot more
connections, with a growing demand for
low latency without sacrificing security and

reliability. However, applications are often limited
by the use of TCP as the underlying transport. TCP,
without the TCP Fast Open extension, introduces
one round-trip time (RTT) of latency due to its
handshake. It might slow down performance when
packet loss occurs and when packets are retrans-
mitted with long delays leading to head-of-line
blocking. Moreover, TCP is built in the system
kernel, which brings difficulties to the protocol
update.

To tackle these issues, a new transport protocol
called Quick UDP Internet Connections (QUIC) has
been proposed. QUIC is defined on top of UDP,
and its design is inspired by the best practices of
multiple existing protocols, including TCP, Trans-
port Layer Security (TLS), and HTTP/2. QUIC aims
to reduce connection latency by sending data
directly when establishing a connection in the
best case (the so-called “0-RTT” approach). Fur-
thermore, it provides multiplexing features opti-
mized for HTTP/2 and richer feedback information
that might allow for new congestion control
approaches. Moreover, as encapsulated in UDP,
QUIC can be easily implemented in user space

instead of the system kernel, which enables faster
deployment as part of application update cycles.

The QUIC protocol is currently being stan-
dardized by the IETF QUIC working group. The
IETF community showed strong interest in stan-
dardization of QUIC. A previous version has been
deployed in most Google services as well as the
Chrome browser, and is being implemented by a
few third-party developers. It should be noted that
the standardization process of QUIC is fully open
to community input that might lead to significant
differences in the protocol design, as compared to
the version currently deployed by Google.

Design Overview
Figure 1 shows the layering approach of QUIC.
QUIC incorporates congestion control and loss
recovery features similar to TCP, while providing
richer signaling capabilities. Additionally, QUIC
decreases network latency by offering fewer RTTs
for connection setup. QUIC incorporates the key
negotiation features of TLS 1.3, requiring all con-
nections to be encrypted. The motivation behind
mandatory encryption isn’t just to ensure security
and privacy of user data, but also to prevent mid-
dle boxes from tampering with the packet infor-
mation, which can hinder the future evolution of

Innovating Transport with
QUIC: Design Approaches and
Research Challenges
Yong Cui, Tianxiang Li, and Cong Liu • Tsinghua University, China

Xingwei Wang • Northeastern University, China

Mirja Kühlewind • ETH Zurich, Switzerland

QUIC UDP Internet Connections (QUIC) is a new transport protocol that

provides low-latency communication, security, and rapid deployment. QUIC

has begun its standardization process with strong interest in the IETF commu-

nity. This article introduces QUIC’s features and discusses its challenges.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:31:04 UTC from IEEE Xplore. Restrictions apply.

Innovating Transport with QUIC: Design Approaches and Research Challenges

MaRCh/aPRIl 2017 73

the QUIC protocol. Further, QUIC also
subsumes features of HTTP/2 such
as multi-streaming, while avoiding
problems such as head-of-line block-
ing that occur when TCP is used,
because all packets (of potentially dif-
ferent HTTP/2 streams) must be deliv-
ered in order.

Connection Establishment
A majority of services these days
require a secure and reliable network
connection, and TCP+TLS are widely
used for fitting this purpose. One issue
with TCP+TLS (1.2) is that it takes at
least two RTTs to set up a secure con-
nection, which brings a significant
latency overhead. QUIC improves on
this by tightly integrating with TLS1.3,
leading to a minimum of zero RTTs
to establish an encrypted connection —
meaning that payload data can be sent
on the first packet if a previous encryp-
tion session is resumed.

First-Time Connection
Establishment
With successful version negotiation,
QUIC uses one RTT for the first-time
connection establishment by combining
the transport and crypto handshake,
which is two RTTs less than the widely
used TCP+TLS 1.2 and one RTT less
than TCP+TLS 1.3 (see Figure 2a). QUIC
combines the transport and crypto
handshake to minimize connection
latency, carrying both the TLS hand-
shake and the relevant QUIC transport
setup parameters in the first packet of
the connection.

When the QUIC client is connect-
ing to a server for the first time, it
sends the Client Hello message to the
server for key negotiation, along with
some basic QUIC options and param-
eters such as the connection identi-
fier as well as the preferred version
number. The client encodes the hand-
shake according to the version num-
ber it proposed. If the server doesn’t
support the version, it would trigger
the client to go through an additional
version negotiation process. Other-

wise, the server replies with the Server
Hello message, certificate, and session
information that the client can use the
next time it connects to the server.
The client can then send its encrypted
requests to the server, taking a total of
one RTT for connection setup.

The parameters negotiated during
the first connection are contained in a
cryptographic cookie stored on the cli-
ent. It’s used to authenticate the client
when the client connects to the same
server again. The cookie also contains
the server’s Diffie-Hellman value, which

is used to calculate the encryption key.
This information is the basis for the
0-RTT connection establishment.

0-RTT Connection Establishment
Many connections are established
between clients and servers that had
communicated before, making it pos-
sible to reduce negotiation latency
if the server could recognize the cli-
ent during subsequent connections.
Not requiring one RTT for the trans-
port handshake and utilizing session
resumption for encryption allows a

Figure 1. Quick UDP Internet Connections (QUIC) architecture. TLS =
Transport Layer Security.

TLS

HTTP/2 over QUIC

UDP

IP

TLS 1.3 key
negotiation

Congestion control
Loss recovery

Congestion control
Loss recovery

HTTP/2

TCP

Multistreaming Multistreaming
QUIC

Figure 2. Handshake round-trip time (RTT) of different protocols. (a) First-time
connection establishment. (b) Subsequent connections.

TCP+TLS1.2
3RTT

TCP+TLS1.3
2RTT

QUIC
1RTT

QUIC
handshake

Data transfer

TCP+TLS1.2
2RTT

TCP+TLS1.3
1RTT

QUIC
0RTT

Data transfer

TCP
handshake

Data transfer

TLS
handshake

TCP
handshake

Data transfer

TLS
handshake

TCP
handshake TCP

handshake

Data transfer

Data transferTLS
handshake

Client Server Client ServerClient Server

(b)

(a)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:31:04 UTC from IEEE Xplore. Restrictions apply.

Standards

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

QUIC client to immediately send data
to the server it had connected to before
(see Figure 2b).

To resume a cryptographic ses-
sion, the client sends its cached cryp-
tographic cookie and Diffie-Hellman
value to the server along with the
encrypted payload. The server authen-
ticates the client through information
contained in the cookie. After success-
ful authentication, it can calculate the
encryption key using the Diffie-Hell-
man value stored in the cookie and
the value sent by the client. The server
can then decrypt the payload data —
such as a HTTP/2 request — and send
its encrypted response immediately
back to the client.

Stream Multiplexing
Stream multiplexing is a method for
sending multiple streams of data over
a single transport connection. Brows-
ers usually open multiple concurrent
TCP connections when accessing a
website because HTTP1.1 could only
request one resource at a time (see
Figure 3a), which consisted of short
data transfers over independent con-
nections. This introduced additional
latencies and the complexity of man-
aging multiple connections.

HTTP/2 addresses this problem by
multiplexing streams over one TCP con-
nection if multiple requests are sent to
the same server. However, even if the
payload data of the different streams
are independent, all data transmitted
over the same TCP connection will be
delivered in order to the application,
leading to head-of-line blocking of
missing data on one stream for data
successfully transmitted and received
on other streams, as Figure 3b shows.

QUIC supports multiplexing of
concurrent HTTP streams on a single
connection without requiring ordered
delivery of all packets of the transport
connection, as Figure 3c shows. In
QUIC, all data are still transmitted fully
reliably. One QUIC packet can carry
multiple frames of the same or differ-
ent streams. All the frames belonging
to the same stream are delivered in
order, but the missing frames of one
stream don’t block the delivery of
other streams’ payload data.

QUIC also adapts two levels of flow
control similar to HTTP/2 over TCP.
Connection-level flow control allows
adjustment of the aggregate buffer
for the entire connection. Stream-
level flow control allows the receiver
to adjust how much data it’s willing

to allocate for each stream, avoiding
that a single stream consumes all the
buffer resources and thus could block
other stream transmissions.

Congestion Control and Loss
Recovery
The QUIC working group in the IETF is
currently chartered to only use stan-
dardized congestion control as the
default congestion control algorithm,
which at the moment is just NewReno1
and Cubic.2 Cubic is a widely used
congestion control mechanism and is
undergoing activity in the IETF TCPM
working group. Similar to most TCP
implementations today, QUIC aims
for a pluggable congestion control
interface that allows experimenta-
tion with different congestion control
algorithms.

However, QUIC provides a slightly
different environment for congestion
control than TCP does. First, it inher-
ently adopts modern loss-recovery
mechanisms such as F-RTO3 and Early
Retransmit.4 Further, it offers more
detailed feedback information for loss
detection. For example, it uses a mono-
tonically increasing packet number
but doesn’t retransmit on the packet-
level (only on a per-frame base). This
allows QUIC to distinguish retransmis-
sions from the originally sent packets,
avoiding retransmission ambiguities,
similar to the idea of the TCP Recent
ACKnowledgment (RACK) algorithm.5
Additionally, QUIC carries informa-
tion about the delay between when
a packet was received and when the
ACK was sent. This information allows
the original sender to achieve a better
estimation of the path RTT. QUIC also
adopts the TCP’s selective acknowl-
edgment mechanism,6 and supports
up to 255 ACK ranges, making it more
resilient to reordering and loss.

Challenges and Future
Directions
The first QUIC working group meet-
ing was held at IETF-97 and the ini-
tial working group documents have

Figure 3. Multiplexing comparison. This involved sending multiple streams of data
over a single transport connection using (a) HTTP1.1, (b) HTTP/2, and (c) QUIC.

TCP connection

TCP 1
TCP 2
TCP 3

Stream 1

Stream 2

Stream 3

Stream 1

Stream 2

Stream 3

HTTP1.1

HTTP/2

QUIC

UDP connection

Head-of-line blocking

(a)

(b)

(c)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:31:04 UTC from IEEE Xplore. Restrictions apply.

Innovating Transport with QUIC: Design Approaches and Research Challenges

MaRCh/aPRIl 2017 75

been adopted shortly after, focusing
on the design of the core transport
protocol;7 the congestion control and
loss recovery mechanism;8 using TLS
1.3 for key negotiation;9 and a map-
ping for HTTP/2.10 The QUIC work-
ing group charter foresees multipath
support and optional forward-error
correction (FEC) as the next step,
but are currently out of scope until
all action items on the current mile-
stone list are completed. Further, the
working group also focuses on net-
work management issues that QUIC
may introduce, aiming to produce an
applicability and manageability state-
ment in parallel to the actual protocol
work. Aside from this work, QUIC also
provides the potential for research in
other areas.

Congestion Control in Special
Network Scenarios
Congestion control mechanisms in
transport protocols need to adapt to
many different scenarios with distinct,
varying network characteristics. Here,
wireless networks are a key challenge
for congestion-control research. Tra-
ditionally, TCP congestion control
regards packet loss as congestion
occurrence. For wireless networks,
however, loss often indicates trans-
mission errors, especially in the case
of mobility of the connecting client.
The more fine-grained information
provided by QUIC can help to dis-
tinguish other loss events from con-
gestion events and therefore a large
performance improvement could be
achieved in situations with high non-
congestion related loss rates.

Other specific network scenarios,
such as data centers that require low
latency for short flows11 and virtual
reality (VR) that has high demand for
user-perceived latency, might also
benefit from the more accurate tim-
ing information provided by QUIC’s
feedback scheme. Furthermore, cus-
tomizing QUIC to specific network
scenarios could be achieved more
easily in user space implementations

of QUIC, which provides a platform
for easier experimentation and faster
deployment.

Forward-Error Correction
Packet loss leads to congestion win-
dow reduction and thereby decreases
the throughput, regardless of whether
the loss is congestion-related. How-
ever, even if congestion occurred and
the sending rate is correctly reduced,
packet loss still causes additional
delays due to potentially slow recovery
mechanisms, based on either duplicate
acknowledgments or even retransmis-
sion timeouts (for example, if tail loss
occurs). Coding is a method of using
redundant information sent with pack-
ets for FEC, providing better loss toler-
ance and proactive, faster recovery.

One of the issues of coding is the
additional time introduced for encod-
ing and decoding, which is against
QUIC’s low-latency design principle.
Further, as the amount of redundant
information affects the performance
of coding-based loss recovery, it’s a
tradeoff with bandwidth consump-
tion. Coding could be used to improve
performance for scenarios with high
packet loss such as wireless networks,
but it would also introduce more
energy consumption, causing issues
for power-constrained mobile ter-
minals. While coding has been well-
deployed in the link layer, it’s still a
point of research for transport layer
protocols such as QUIC and TCP.12

Application-Based Optimization
Currently, the working group will focus
on providing a mapping of HTTP/2
to QUIC as the initial use case. How-
ever, QUIC can also be used for other
applications. Especially as future ver-
sions of QUIC might incorporate FEC,
it could be applied to applications such
as real-time communication and video
streaming, which are tolerant to loss
but latency-sensitive. The performance
of QUIC could thus be optimized based
on application requirements, which
requires an interface for the application

to configure — for example, the con-
tent type and tolerance of packet loss.

Prioritization
Web content usually has dependen-
cies between the Web objects, which
might limit performance.13 For exam-
ple, a JavaScript file should be loaded
prior to a file triggered by the script.
Given that QUIC provides multiple,
independent streams to transmit these
Web objects, it’s possible for QUIC to
prioritize between streams based on
these dependencies. However, setting
the priority levels correctly, consid-
ering dynamic object load time and
current network status, is an open
field for additional research.

Security and Privacy
QUIC provides secure transport by
integrating the security functionality
of TLS and enforcing the encryption
of all connection data. However, sim-
ilar to TLS1.3, 0-RTT resumption in
QUIC might also introduce new secu-
rity threats. A typical kind of issue is
the replay or manipulation of packets
from a previous connection hand-
shake. Furthermore, if such an attack
causes the client and server to perform
a full handshake, consuming compu-
tational resources and memory space,
it could be used as an additional DoS
attack vector.14 Further analysis and
research is valuable in this space.

Unencrypted information such as
a connection identifier is susceptible
to the threat of pervasive monitor-
ing attacks. However, some informa-
tion is needed for economically viable
network management supporting the
current common practice of firewalls,
load balancers, and network address
translation (NAT) traversal. To con-
serve privacy while allowing for
functions such as IP address mobil-
ity, it’s suggested that QUIC use new
identifiers for each encrypted com-
munication session to avoid link-
ability.15 This tussle is the subject of
an ongoing discussion in the QUIC
working group and will be even more

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:31:04 UTC from IEEE Xplore. Restrictions apply.

Standards

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

relevant when work is extended to
include multipath support for QUIC.

Q UIC is a new transport proto-
col currently under standardiza-

tion in the IETF, introducing features
such as 0-RTT connection establish-
ment, stream multiplexing avoiding
(packet-based) head-of-line block-
ing, and improved signaling for loss
recovery and congestion control.
Given these changed characteris-
tics compared to TCP, QUIC provides
new challenges and opportunities for
research. Moreover, as QUIC is based
on top of UDP, it provides a platform
for easy experimentation, and poten-
tially fast adoption and deployment
of research results.

Acknowledgments
This work is partly supported by the National

Natural Science Foundation of China (grants

61422206, 61120106008, 61225012, and

61572123), the National High Technology

Research and Development Program (“863” Pro-

gram) of China (2015AA016101), and the Tsinghua

University Initiative Scientific Research Program

(2014Z09103). This work has received funding

from the European Union’s Horizon 2020 research

and innovation program under grant agreement

688421, and was supported by the Swiss State

Secretariat for Education, Research, and Innova-

tion (SERI) under contract 15.0268. The opinions

expressed and arguments employed reflect only

the authors’ views. The European Commission

isn’t responsible for any use that might be made of

that information. Further, the opinions expressed

and arguments employed herein don’t necessarily

reflect the official views of the Swiss government.

References
1. T. Henderson et al., The NewReno Modifi-

cation to TCP’s Fast Recovery Algorithm,

RFC 6582, 2012.

2. X. Rhee et al., CUBIC for Fast Long-Distance

Networks, draft-ietf-tcpm-cubic-03, IETF

Internet draft, 2 Dec. 2016; https://tools.

ietf.org/html/draft-ietf-tcpm-cubic-03.

3. P. Sarolahti, M. Kojo, and K. Raatikainen,

“F-RTO: An Enhanced Recovery Algorithm

for TCP Retransmission Timeouts,” ACM

Sigcomm Computer Comm. Rev., vol. 33,

no. 2, 2003, pp. 51–63.

4. M. Allman et al., Early Retransmit for TCP

and Stream Control Transmission Protocol

(SCTP), RFC 5827, 2010.

5. C. Cheng, RACK: A Time-Based Fast Loss

Detection Algorithm for TCP, draft-cheng-tcpm-

rack-01, IETF Internet draft, 31 Oct. 2016; https://

tools.ietf.org/html/draft-ietf-tcpm-rack-01.

6. M. Mathis et al., TCP Selective Acknowl-

edgment Options, RFC 2018, 1996; https://

tools.ietf.org/html/rfc2018.

7. R. Hamilton et al., QUIC: A UDP-Based Secure

and Reliable Transport for HTTP/2, hamil-

ton-quic-transport-protocol-01, IETF Internet

draft, 31 Oct. 2016; https://tools.ietf.org/html/

draft-hamilton-quic-transport-protocol-01.

8. J. Iyengar, et al., QUIC Loss Recovery and

Congestion Control, draft-iyengar-quic-

loss-recovery-01, IETF Internet draft, 31

Oct. 2016; https://tools.ietf.org/html/draft-

iyengar-quic-loss-recovery-01.

9. M. Thomson et al., Using Transport Layer

Security (TLS) to Secure QUIC, draft-

thomson-quic-tls-01, IETF Internet draft,

25 Oct. 2016; https://tools.ietf.org/html/

draft-thomson-quic-tls-01.

10. R. Shade et al., HTTP/2 Semantics Using the

QUIC Transport Protocol, draft-shade-quic-

http2-mapping-00, IETF Internet draft,

8 July 2016; https://tools.ietf.org/html/

draft-shade-quic-http2-mapping-00.

11. M. Alizadeh et al., “Data Center TCP

(DCTCP),” ACM Sigcomm Computer Comm.

Rev., vol. 40, no. 4, 2010, pp. 63–74.

12. Y. Cui et al., “End-to-End Coding for TCP,”

IEEE Network, vol. 30, no. 2, 2016, pp. 68–73.

13. X.S. Wang et al., “How Speedy Is SPDY?”

Proc. 11th Usenix Symp. Networked Systems

Design and Implementation, 2014; www.

usenix.org/system/files/conference/nsdi14/

nsdi14-paper-wang_xiao_sophia.pdf.

14. R.C. Lychev et al., “How Secure and Quick

Is QUIC? Provable Security and Perfor-

mance Analyses,” Proc. 2015 IEEE Sym-

posium on Security and Privacy, 2015;

https://csdl.computer.org/csdl/proceed-

ings/sp/2015/6949/00/6949a214.pdf.

15. W.M. Petullo et al., “MinimaLT: Minimal-

Latency Networking through Better Security,”

Proc. 2013 ACM SIGSAC Conf. Computer &

Comm. Security, ACM, 2013; https://cr.yp.to/

tcpip/minimalt-20130522.pdf.

Yong Cui is a full professor in the Department of

Computer Science and Technology at Tsing-

hua University, China. His research interests

include computer network architecture and

mobile computing. Cui has a PhD in com-

puter science from Tsinghua University. Con-

tact him at cy@csnet1.cs.tsinghua.edu.cn.

Tianxiang Li is a master’s student in the Depart-

ment of Computer Science and Technology

at Tsinghua University. His research inter-

ests include TCP, DHCP, DNS, and IPv6. Li

has a BS in e-commerce engineering from

the Beijing University of Posts and Tele-

communications. Contact him at litx14@

mails.tsinghua.edu.cn.

Cong Liu is a PhD student in the Department

of Computer Science and Technology at

Tsinghua University. His research interests

include IPv4–IPv6 protocol transition and

network security. Liu has a BS in computer

science and technology from Tsinghua

University. Contact him at cong-liu13@

mails.tsinghua.edu.cn.

Xingwei Wang is a full professor in the Computer

Science Department at Northeastern Uni-

versity, China. His research interests include

future network architecture, cloud computing,

and cybersecurity. Wang has a PhD in com-

puter science from Northeastern University.

Contact him at wangxw@mail.neu.edu.cn.

Mirja Kühlewind is a postdoctoral researcher at

ETH Zurich, Switzerland. She is one of the

Transport Area Directors at the IETF, a co-

chair of the Measurement and Analysis for

Protocols Research Group (MAPRG) in the

IRTF, and the coordinator of the EU H2020

MAMI (Measurement and Architecture for

a Middleboxed Internet) project. Her cur-

rent research interests include transport

protocols, congestion control, and Internet

measurements. Kühlewind has a PhD from

the University of Stuttgart. Contact her at

mirja.kuehlewind@tik.ee.ethz.ch.

Read your subscriptions
through the myCS pub-
lications portal at http://
mycs.computer.org.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:31:04 UTC from IEEE Xplore. Restrictions apply.

